Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 2, 2026
-
Abstract This paper presents a virtual patient generator (VPG) intended to be used for preclinical in silico evaluation of autonomous vasopressor administration algorithms in the setting of experimentally induced vasoplegia. Our VPG consists of two main components: (i) a mathematical model that replicates physiological responses to experimental vasoplegia (induced by sodium nitroprusside (SNP)) and vasopressor resuscitation via phenylephrine (PHP) and (ii) a parameter vector sample generator in the form of a multidimensional probability density function (PDF) using which the parameters characterizing the mathematical model can be sampled. We developed and validated a mathematical model capable of predicting physiological responses to the administration of SNP and PHP. Then, we developed a parameter vector sample generator using a collective variational inference method. In a blind testing, the VPG developed by combining the two could generate a large number of realistic virtual patients (VPs), which could simulate physiological responses observed in all the experiments: on the average, 98.1% and 74.3% of the randomly generated VPs were physiologically legitimate and adequately replicated the test subjects, respectively, and 92.4% of the experimentally observed responses could be covered by the envelope formed by the subject-replicating VPs. In sum, the VPG developed in this paper may be useful for preclinical in silico evaluation of autonomous vasopressor administration algorithms.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available October 1, 2026
-
Abstract Enantioenriched propargylic and allenic derivatives of silicon, germanium, and tin are versatile building blocks for stereoselective synthesis. Consequently, considerable efforts toward their efficient and selective synthesis have been made, both through classical approaches for chirality transfer and catalytic enantioselective strategies that employ the latest developments in transition metal catalysis, organocatalysis, and photoredox catalysis. In this review, we survey broadly applicable synthetic strategies and discuss the scope and mechanistic details for specific protocols that afford these compounds in a regio‐ and stereoselective manner.more » « less
-
Two-dimensional (2D) kagome lattice metals are interesting because their corner sharing triangle structure enables a wide array of electronic and magnetic phenomena. Recently, post-growth annealing is shown to both suppress charge density wave (CDW) order and establish long-range CDW with the ability to cycle between states repeatedly in the kagome antiferromagnet FeGe. Here we perform transport, neutron scattering, scanning transmission electron microscopy (STEM), and muon spin rotation (μSR) experiments to unveil the microscopic mechanism of the annealing process and its impact on magneto-transport, CDW, and magnetism in FeGe. Annealing at 560 °C creates uniformly distributed Ge vacancies, preventing the formation of Ge-Ge dimers and thus CDW, while 320 °C annealing concentrates vacancies into stoichiometric FeGe regions with long-range CDW. The presence of CDW order greatly affects the anomalous Hall effect, incommensurate magnetic order, and spin-lattice coupling in FeGe, placing FeGe as the only kagome lattice material with tunable CDW and magnetic order.more » « lessFree, publicly-accessible full text available April 7, 2026
-
Free, publicly-accessible full text available December 1, 2026
An official website of the United States government
